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ABSTRACT 

In this paper by considering, the Decay law    of the form
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  We 

generalized the result of Arbab (2001) for higher dimensional space time and observed that the cosmological constant 

decreases as 
2t  and rate of particle creation is smaller than the steady state value. We have found an inflationary 

solution of the de-Sitter type with  36  . The present model could resolve many of standard model problems 

with observations and thus could become a viable candidate as an alternative model.  
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I. INTRODUCTION 

This paper is the straight forward generalizations of the work obtained earlier by Arbab (2001) in the Kaluza-Klein 

theory of gravitation.In this chapter, we suggest a variational law for the cosmological constant of the form  

R

R

R

R 
 

2

2

3
    , where α and β are dimensionless constants. It is observed that the cosmological constant 

Ʌ is found to be decreased as t-2 and the rate of particle observation is smaller than the steady state values. It is also 

observed that the universe must be accelerated if Ʌ > 0. The model obtained here is free from a lot of cosmological 

problems and could fit well with the present observational data.        

                                        

1.2. Metric and field equations 

Consider a Robertson Walker metric 

ds2 = dt2 − R2(t)(dx2 + dy2 + dz2) − A2(t)dm2                                                            (1.1) 

The Einstein’s field equations for the metric (1.1) with variable cosmological and gravitational ‘constants’ and a 

perfect fluid yield,  

3(𝑛 + 1)
𝑅2̇

𝑅2 = 8𝜋𝐺𝜌 + Λ                                         (1.2) 

3(𝑛 + 1)
�̈�

𝑅
= −8𝜋𝐺[𝜌 + 𝑝(𝑛 + 1)] + Λ𝑛                         (1.3) 

Where 𝜌
 
is the fluid energy density and p it’s pressure. 

The equation of state is usually given by, 

     𝑝 = 𝜔𝜌                (1.4) 

where, 𝜔 is the equation of state parameter. 
 

The energy conservation equation is  𝑇𝑗;𝑖
𝑖 = 0 , leads to, 
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8𝜋⌊𝐺;𝑖 𝑇𝑗
𝑖 + 𝐺𝑇𝑗;𝑖

𝑖 ⌋ + Λ;𝑖𝛿𝑗
𝑖 = 0 

    8π [
�̇�

𝐺
𝜌 + �̇� + (3

�̇�

𝑅
+

�̈�

𝐴
) (𝑝 + 𝜌)] + Ʌ̇ = 0 

�̇� +
�̇�

𝐺
𝜌 + (3

�̇�

𝑅
+

�̈�

𝐴
) (𝑝 + 𝜌) +

Λ̇

8𝜋𝐺
= 0 

�̇� +
�̇�

𝐺
𝜌 + (𝑛 + 3)

�̇�

𝑅
(𝑃 + 𝜌) = −

Λ̇

8𝜋𝐺
               (𝐴 = 𝑅𝑛) 

(𝑛 + 3)�̇�(𝑝 + 𝜌) = − (
�̇�

𝐺
𝜌 + �̇� +

Λ̇

8𝜋𝐺
) 𝑅 

                                                                                                                                           (1.5) 

1.3 Particle Creation: 

1.3.1 Matter-dominated universe (MDU) 

For a pressure less MDU(p = 0) and for a constant, Gravitational Constant (G), equation (1.5) reads, 

(𝑛 + 3)�̇�𝜌 + 𝜌�̇� = −
Λ̇

8𝜋𝐺
𝑅 

Multiply both side of above equation by 𝑅𝑛+2  to get   

(𝑛 + 3)�̇�𝑅𝑛+2𝜌 + �̇�𝑅𝑛+3 = −
Λ̇

8𝜋𝐺
𝑅𝑛+3  

𝑑

𝑑𝑡
[𝜌𝑅𝑛+3] = −

𝑅𝑛+3

8𝜋𝐺
∙

𝑑Λ

𝑑𝑡
 

                                                          (1.6) 

Now, consider decay law of the form 

Λ = 3𝛼
�̇�2

𝑅2
+ 𝛽

�̈�

𝑅
 

                                                                             (1.7) 

Where ∝, 𝛽 are dimensionless constants. We suggest for a linear relationship between Ʌ and the Ricci scalar in the 

Einstein field equation that Ʌ has a general variation which resembles this scalar. For Flat space one gets the above 

variation. 

For a flat universe, equations (1.3) and (1.7) yields, 

                                [3 − 𝛽(1 + 𝜔)]�̈�𝑅 − 3[𝛼(1 + 𝜔) − 1 − 𝜔(𝑛 + 1)]�̇�2                                   (1.8)              

which can be integrated to give 

                                                 𝑅(𝑡) = [
16−(3𝛼+𝛽)(1+𝜔)+3𝜔(𝑛+1)

3−𝛽(1+𝜔)
𝐾1𝑡]                                              (1.9) 

Where 𝑘1 is an integrating constant. 
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To find 𝛬(𝑡) we have,             𝑅(𝑡) = (𝐵𝑘1𝑡)
1

𝛽⁄
 

Where                                      𝐵 =  
[6−(3𝛼+𝛽)(1+𝜔)+3𝜔(𝑛+1)]

3−𝛽(1+𝜔)
 

Then,                                        
�̈�

𝑅
=

1

𝐵𝑡2 (
1

𝐵
− 1)           and            

�̇�

𝑅
=

1

𝐵𝑡
 

 𝛬(𝑡) = 3𝛼
1

𝐵2𝑡2
+ 𝛽

1

𝐵𝑡2
(

1

𝐵
− 1) 

So that,                                              𝛬(𝑡) =
3[3−𝛽(1+𝜔)][3𝛼−𝛽{1+𝜔(𝑛+1)}]

[6−(3∝+𝛽)(1+𝜔)+3𝜔(𝑛+1)]2 𝑡2        (1.10) 

Now we find  𝜌(𝑡):- 

From Equations (1.2), (1.7) and (1.9), the energy density takes the form 

       𝜌(𝑡) =
3[3−𝛽(1+𝜔)][3(𝑛+1)−3𝛼−𝑛𝛽]

8𝜋𝐺[6−(3∝+𝛽)(1+𝜔)+3𝜔(𝑛+1)]2 𝑡2         (1.11) 

The vacuum energy density (𝜌𝑉) is given by 

                                                          𝜌𝑣(𝑡) =
Λ

8πG
=

3

8πG

[3−𝛽(1+𝜔)][3𝛼−𝛽{1+𝜔(𝑛+1)}]

[6−(3∝+𝛽)(1+𝜔)+3𝜔(𝑛+1)]2 𝑡2                        (1.12)                                            

The deceleration parameter (q) is defined as, 

      𝑞 = −
𝑅 ̈ 𝑅

�̇�2 = Λ/8𝜋𝐺 =
3−3𝛼(1+𝜔)+3𝜔(𝑛+1)

3−𝛽(1+𝜔)
                               (1.13)                  

Hence for Matter-Dominated Universe (MDU) i.e. p = 0 (ω=0), we obtain 

    𝑅(𝑡) = [
6−(3𝛼+𝛽)

3−𝛽
𝑘1𝑡]

3−𝛽

6−(3𝛼+𝛽)

                                                

(1.14) 

    

𝛬(𝑡) =
3(3−𝛽)(3𝛼−𝛽)

[6−(3𝛼+𝛽)]2𝑡2

 

                                                            (1.15) 

    𝜌(𝑡) =
3[3−𝛽][3(𝑛+1)−3𝛼−𝑛𝛽]

8𝜋𝐺[6−(3∝+𝛽)]2 𝑡2          (1.16) 

    𝜌𝑣(𝑡) =
3

8𝜋𝐺

[3−𝛽][3𝛼−𝛽]

[6−(3∝+𝛽)]2 𝑡2         (1.17) 

and    𝑞 =
3−3∝

3−𝛽
,       𝛽 ≠ 3                       (1.18) 

The density parameter of the universe (𝛺𝑚) is given by 

    𝛺𝑚 =
𝜌

𝜌𝑐
= 𝜌

8𝜋𝐺

3(𝑛+1)𝐻2     
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    Ω𝑚 =
[3(𝑛+1)−3𝛼−𝑛𝛽]

[(𝑛+1)(3−𝛽(1+𝜔)]
                                    (1.19)

 

Hence for MDU (ω = 0) 

    Ω𝑚 =
[3(𝑛+1)−3𝛼−𝑛𝛽]

[(𝑛+1)(3−𝛽)]
        , 𝛽 ≠ 3                     (1.20) 

where  𝜌𝑐 =
3(𝑛+1)𝐻2

8𝜋𝐺
  is the critical energy density of the universe and 𝐻 =

�̇�

𝑅
   is the Hubble Constant. 

The density parameter due to vacuum contribution is defined as    ΩΛ =
Λ

3(𝑛+1)𝐻2 

Using Equations (1.9) and (1.10), this yields   ΩΛ =
[3𝛼−𝛽{1+𝜔(𝑛+1)}]

(𝑛+1)[3−𝛽(1+𝜔)]
         (1.21) 

Hence for MDU (ω = 0),we obtain, 

    ΩΛ =
3𝛼−𝛽

(𝑛+1)(3−𝛽)
,           𝛽 ≠ 3                              (1.22)  

We shall define         𝛺𝑡𝑜𝑡𝑎𝑙 = 𝛺𝑚 + 𝛺𝛬       𝑎𝑛𝑑        𝜌𝑡𝑜𝑡𝑎𝑙 = 𝜌 + 𝜌𝑣            (1.23) 

Hence equations (1.20),(1.22) and (1.23) gives    𝛺𝑡𝑜𝑡𝑎𝑙 = 1. 

This situation is favoured by the inflationary scenario. 

Also we have 

    𝑡𝑝 =
3−𝛽

6−3𝛼−𝛽
𝐻𝑝

−1,       (1.24) 

    𝛺𝑝
𝑚 =

[3(𝑛+1)−3𝛼−𝑛𝛽]

[(𝑛+1)(3−𝛽)]
                    (1.25) 

    𝛬𝑝 =
3(3𝛼−𝛽)

(3−𝛽)
𝐻𝑝

2   ,     𝛽 ≠ 3      (1.26) 

(Here the subscript ‘p’ denotes the present value of the quantity). 

For ages larger than the Standard Model, one requires 𝛽 < 3𝛼  and for 𝑡𝑝 > 0,   𝛽 < 3  and 𝛼 > 1.  This constraint 

indicates that Λ  is positive. The precise value of  𝛼 𝑎𝑛𝑑 𝛽  has to be determined from observational data.  

We now calculate the rate of particle creation (annihilation) N, which is defined as, 

    𝑁 =
1

𝑅𝑝
(𝑛+3)

𝑑{𝜌𝑅𝑛+3}

𝑑𝑡
|

𝑝
     (1.27) 
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Using equations (1.6), (1.7), (1.10), (1.24) and (1.26), one obtains 

    𝑁𝑝 =
2(3𝛼−𝛽)

3−𝛽
𝜌𝑝   𝐻𝑝    ,        𝛽 ≠ 3     (1.28) 

We remark that this rate is less than that of the steady state model(= 3𝜌0  𝐻𝑝  ). 

If 𝛽 = 3𝛼  then Λ = 0,  𝑁𝑝 = 0, 𝑡𝑝 =
1

2
𝐻𝑝

−1  and 𝛺𝑝
𝑚 = 1. This case is equivalent to standard model result. 

1.3.2 Radiation-dominated universe (RDU) 

This is characterized by the equation of the state 𝑝 = 𝜔𝜌 (𝜔 =
1

3
) 

In this Case, Equations (1.2), (1.3) and (1.7) yield 

    3[(𝑛 + 4) − 4𝛼]
�̇�2

𝑅2 + (9 − 4𝛽)
�̈�

𝑅
= 0        (1.29) 

This can be solved to give 

   𝑅(𝑡) = [
3(𝑛+7)−4(3𝛼+𝛽)

9−4𝛽
𝐷𝑡]

9−4𝛽

3(𝑛+7)−4(3𝛼+𝛽)
       , D=constant             (1.30) 

Also equations  (1.2),(1.5),(1.7) and (1.30) gives 

    Λ(𝑡) =
3(9−4𝛽)[9𝛼−𝛽(𝑛+4)]

[3(𝑛+7)−4(3𝛼+𝛽)]2𝑡2        (1.31) 

    𝜌(𝑡) =
9

8𝜋𝐺

(9−4𝛽)[3(𝑛+1)−3𝛼−𝑛𝛽]

[3(𝑛+7)−4(3𝛼+𝛽)]2𝑡2                    (1.32) 

1.4   No particle creation 

We now consider a model in which both G and Ʌ vary with time in such a way that the usual energy conservation 

law holds. 

1.4.1 Matter-dominated Universe (MDU): 

Equation (1.5) can be written as 

    (𝑛 + 3)
�̇�

𝑅
(𝑝 + 𝜌) + �̇� = − (

�̇�

𝐺
𝜌 +

Λ̇

8𝜋𝐺
) 

Now by conservation equation we have, 𝑇𝑗;𝑖
𝑖 = 0 

i.e.      (𝑛 + 3)
�̇�

𝑅
(𝑝 + 𝜌) + �̇� = 0 

      (𝑛 + 3)(𝑝 + 𝜌)𝐻 + �̇� = 0 
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      (𝑛 + 3)𝜌𝐻 + �̇� = 0                     (for MDU, p = 0) 

Thus we have, 

       
�̇�

𝐺
𝜌 +

Λ̇

8𝜋𝐺
= 0 

       8𝜋𝐺 ̇ 𝜌 + Λ̇ =0  

Thus Equation (1.5) can be split to give,   (𝑛 + 3)𝜌𝐻 + �̇� = 0                  (1.33) 

        8𝜋𝐺 ̇ 𝜌 + Λ̇ =0                 (1.34) 

Using equations (1.9),(1.10),(1.33) and (1.34) yield 

    𝑅(𝑡) = [
6−(3𝛼+𝛽)𝑘1𝑡

3−𝛽
]

3−𝛽

6−(3𝛼+𝛽)
                (1.35) 

    𝛬(𝑡) = [
3(3−𝛽)(3𝛼−𝛽)

(6−(3𝛼+𝛽))
2

 𝑡2
]       (1.36) 

    𝜌(𝑡) = 𝐹𝑡
−(𝑛+3)(3−𝛽)

[6−(3𝛼+𝛽)]2      ,   F=constant     (1.37) 

    𝐺(𝑡) =
(9−3𝛽)𝑡

2(3𝛼−𝛽)
(6−3𝛼−𝛽)

8𝜋𝐹(6−3𝛼−𝛽)
       (1.38) 

Equation (1.34) represents a coupling between vacuum and gravity and that the vacuum decays to strengthen the 

gravitation interaction that will include an acceleration of the expansion of the universe. Hence, as long as gravity is 

increasing the expansion of the universe will continue. The variation of G could have been overwhelming in the early 

universe. This big gravitational force might have been the course for stopping the rapid expansion during inflationary 

period and latter assist in making the universe matter dominated. This because the increasing gravity forces smaller 

particles to form bigger ones. 

For  𝛽 = 0, 𝛼 = 0, 𝐺 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  and 𝜌 = 𝐷𝑡−2 and 𝑅 = [2𝑘1𝑡]
1

2⁄   which is familiar FRW result. Moreover the 

case 𝛽 = 3𝛼 is equivalent to the Standard Model result. Clearly for 𝛽 < 3, 𝛼 > 1 the gravitational constant increase 

with time. In an earlier work (Arbab, 1997), we have considered the effect of bulk viscosity in variable G and Λ 

models. We have shown that many of non-viscous models are equivalent to viscous models. 

1.4.2 Radiation-dominated Universe (RDU): 

For ω = 1/3, Equation (1.5) gives 

    
4

3
𝐻𝜌(𝑛 + 3) + �̇� = 0        (1.39) 
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And    8𝜋�̇�𝜌 + Ʌ̇ = 0      (1.40) 

Thus, Equations (1.39) and (1.40) yield 

 𝜌(𝑡) = 𝑀𝑡
−4/3(𝑛+3)(9−4𝛽)

18−4(3𝛼+𝛽+=3(𝑛+1)      ,  M = constant                                                                 (1.41) 

And       G(t) = 
3(9−4𝛽)[9𝛼−𝛽(𝑛+4)]

4𝜋𝑀[18−4(3𝛼+𝛽)+3(𝑛+1)]2 𝑡
2[9(𝑛−1)−4𝛽(2𝑛+3)+36𝛼]

[18−4(3𝛼+𝛽)+3(𝑛+1)]       (1.42) 

Abdel Rahman (1990) has recently considered a closed universe model with a critical energy density where both G 

and Ʌ are variables. He found that  𝑅 ∝ 𝑡, 𝐺 ∝ 𝑡2, 𝜌 ∝ 𝑡−4  in the radiation era. His solution corresponds to and a free 

β. Thus both model, albeit different; evolve in a similar way in the early universe. 

1.4.3 Static Solutions 

A static solution can be obtained for both matter and radiation dominated universes with β = 3 and      β = 9/4 

respectively. Thus R = constant, Ʌ = 0,  ρtotal = 0,  N = 0 

 It has been claimed by Kalligas et al. (1992) that they have obtained a static universe with variable G and 

Ʌ. In fact, their solution is nothing but the above solution, since with R = constant Equations (1.2) and (1.3) give Ʌ 

= 0 so that G = constant. Thus their claim of static solution with variable G and Ʌ can not be true with p ≠ -ρ. 

1.5 An Inflationary Solution 

This solution is obtained if we set H =constant. Thus Equations (1.2) and (1.3) give β = 6-3α  

so that  Ʌ = 6H2. This can be integrated to give    H2 = Ʌ/6 

 
�̇�

𝑅
= √

𝜋

6
                         where R = constant.exp(√

𝜋

6
𝑡)  ,    ρtotal = ρ𝑣   

This is the familiar de-Sitter inflationary solution. 

1.6 An Accelerating Universe 

Now, we consider the case α = 0    i.e.  Ʌ = 𝛽
�̈�

𝑅
 

From Equations (1.2), (1.3) and (1.4), we find 

    𝑅    ̈ =
−8𝜋𝐺

3(𝑛+1)
[1 + 𝜔(𝑛 + 1)]𝜌𝑅 +

Ʌ𝑛

3(𝑛+1)
𝑅 

From Equations (1.9) to (1.15) shows that in the matter-dominated universe with G = constant, we have 

                                                      𝑅(𝑡) = [
(6−𝛽)𝑘1𝑡

3−𝛽
]

3−𝛽

6−𝛽
                 

    𝛬(𝑡) = [
3(3−𝛽)𝛽

(6−𝛽)2 𝑡2]        

    𝜌(𝑡) =
3(3−𝛽)[3(𝑛+1)−𝑛𝛽

8𝜋𝐺(6−𝛽)2𝑡2      ,      
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                                                      𝜌𝑣(𝑡) =
3𝛽

8𝜋𝐺

[3−𝛽]

[6−𝛽]2 𝑡2          

                  𝑞 =
3

3−𝛽
,                       𝛽 ≠ 3    

                                                      𝑡𝑝 =
3−𝛽

6−𝛽
𝐻𝑝

−1,             𝛽 ≠ 3, 𝛽 ≠ 6        

  𝛺𝑝
𝑚 =

[3(𝑛+1)−𝑛𝛽]

[(𝑛+1)(3−𝛽)]
                     

    𝛬𝑝 =
3𝛽

(3−𝛽)
𝐻𝑝

2  ,              𝛽 ≠ 3   

 

 

1.7  Conclusion 

In this chapter, we have considered the decay law of the form  andwhere
R

R

R

R
,3

2

2 
 are 

dimensionless constants and found that cosmological constant Ʌ decreases as t-2 and the rate of particle creation is 

smaller than the steady state values in the framework of higher dimensional space time. Many higher dimensional 

models in the literature can be retrieved from this model with particular choice of α and β. 

We have also shown that the universe must be accelerated if Ʌ > 0. This may be due to the fact that, if gravity is 

increasing, then the universe has to increase its expansion rate to escape the future collapse. 
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